
Phuture v2 Core
September 2023

Oliver Mehr
oliver@phuture.finance

Alex Melnichuk
alex@phuture.finance

Abstract

Phuture v2 is a non-custodial, cross-chain asset management protocol compatible with any EVM enabled network.
When compared with the first iteration of the protocol, Phuture v2 introduces cross-chain asset management and
trading capabilities; improved unit minting and redemption efficiency and a more optimised contract architecture
reducing overall gas consumption.

1 INTRODUCTION

Passive investing through index products is a mainstay
of traditional finance that has grown at a compounded
growth rate of 16% since 2015 and now accounts for circa
43% of assets held by U.S.-based ETFs and mutual funds.1

The average actively managed equity fund has underper-
formed its respective benchmark for 12 consecutive years,
mainly due to higher fees, liquidity constraints and a di-
minishing edge.2 The average crypto investor currently
employs active management strategies in their portfolio.
Our thesis is a simple one. As crypto markets mature,
more investors will allocate to passive index strategies as
a result of more efficient markets, making it harder to
achieve excess performance above the benchmark.

Index funds created on today’s non-custodial asset
management protocols are constrained in the range of as-
sets they can effectively support. This limitation is created
through a single chain approach, which lacks the capability
to account for and manage assets across multiple chains,
narrowing the spectrum of eligible assets and strategies.

In this paper, we present Phuture v2, a novel on-chain
asset manager that builds on the first iteration of the pro-
tocol and introduces a number of significant new features
and improvements:

- Multi-chain accounting - Index products have the
ability to price and account for assets across any
EVM enabled network through Proof of Asset (PoA)
tokens.

- Multi-chain trading - Buying and selling batches of
constituent assets can occur across any EVM enabled
network through dex aggregators, ensuring absolute
best execution.

- Contract-driven rebalancing - Multi-chain rebalanc-
ing is orchestrated from a homechain, where trades
are generated and executed on each respective chain
in a trustless manner.

- Optimised minting and redemption - Multi-chain in-
dices are minted atomically, without waiting for
cross-chain messages, and can be redeemed atomi-
cally when sufficient reserves are present. Addition-
ally, the optimised approach allows for slippage-free
minting and redemption. Gas costs related to in-
dex issuance and redemption have undergone dras-
tic improvements, making larger indices more cost
effective.

2 RELATED WORK

This section evaluates the leading participants in the
crypto asset management industry, identifying their short-
comings and detailing how Phuture v2 effectively ad-
dresses and mitigates these weaknesses.

Set Protocol is a permissionless, non-custodial asset
manager which allows for the tokenisation of active or pas-
sive fund strategies. Each instantiation of Set’s protocol
is siloed to the chain it is deployed onto, restricting the
universe of available assets and strategies. Furthermore,
unit issuance and redemption via the basic issuance mod-
ule, the default module for an index, has higher associated
costs, in all cases, due to the requirement to hold each con-
stituent asset. This makes it cost prohibitive to mint and
redeem indices with large numbers of assets.

Balancer is a decentralised automated market maker
that offers a variety of multi-asset liquidity pool types. Its
managed pools are used for fund management with fea-
tures that allow for adding, removing and changing the
weights of assets. Balancer pools are regularly rebalanced
by arbitrageurs, which make it impossible for them to fol-
low an index strategy that is only rebalanced on a periodic
basis. In fact, this will cause the Balancer-based index to
underperform in a unidirectional market when compared
to a Phuture index.

Adding or removing large proportions of single sided
liquidity from the pool is inefficient due to the reliance on

12021.Bloomberg.com.https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bea
r-market/

22022.CNBC.https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behin
d.html

1

https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behind.html
https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behind.html

internal liquidity; internal liquidity - liquidity held within
Balancer - is always less than or equal to external liquid-
ity - liquidity held across all exchanges. Relying solely on
internal liquidity does not guarantee the best trade execu-
tion when entering or exiting the pool. Moreover, Balancer
pools only support assets native to the chain the pool is
deployed onto, limiting the available asset universe.

Alongside is a permissioned asset management pro-
tocol that enables the management of multi-chain indices.
Alongside utilise a centralised custodian, Coinbase Cus-
tody, to hold their index assets, requiring explicit trust in
the members that have access to the account. As a result
of this centralisation, there is no permissionless minting
and redemption restricting access to the primary market.
Furthermore, since trading is executed from the confines
of a custody account, it cannot be as trustless as trading
via smart contracts.

Enzyme is a permissionless and non custodial asset
management protocol that provides fund managers with
the tools to create tokenised investment strategies on a
single chain. It offers a wide range of functionality with
numerous integrations. Enzyme’s approach allows the
manager to allocate new capital in whichever way they
want and are not forced to conform to specific assets and
weights. This is necessary for active strategies, but in-
troduces more trustpoints for passive indexing strategies
where weights and assets are always known.

Additionally, tokenised funds deployed on Enzyme are
tethered to a single chain which removes their ability to
support multi-chain assets and strategies.

Phuture v2’smost significant upgrade is the ability to
trade and manage assets across disparate blockchains from
a single homechain for a broader selection of assets and
strategies. Barriers associated with primary market op-
erations are drastically reduced through the introduction
of a reserve which reduces gas costs and enables slippage-
free issuance and redemption. Trading on v2 is bound to
the target assets and weights of the index at all times,
removing trust in the index manager.

3 SYSTEM OVERVIEW

While all multi-chain crypto indices that exist today
are centralised, Phuture v2 aims to deliver the first DeFi
native solution to cross-chain asset management. Its ar-
chitecture is designed chiefly to support indices at scale,
across many chains while minimising trustpoints.

Figure 1 showcases a complete overview of the Phuture
v2 protocol, introducing the fundamental components that
will be referenced throughout this paper.

3.1 Homechain, Remote Chain and Omni
Layer

- Any multi-chain index launched on Phuture v2 will
have an established homechain, where unit issuance,
unit redemption and rebalancing originate. The
homechain is responsible for pricing by storing the
quantities and accessing the price oracles of each con-
stituent asset.

- An index can have a number of remote chains de-
pending on how many blockchains the index spans.
Each remote chain contains vault contracts which
hold balances of constituent assets. In addition, each
remote chain has an orderbook contract that receives
and executes rebalancing orders from the homechain.
These orders establish the assets and quantities that
should be bought or sold on that chain.

- The Omni layer connects the homechain with the re-
mote chains and is made up of one or several cross-
chain messaging protocols. Interfacing with these
messaging protocols is managed through the mes-
sageRouter contract. Each chain has a messageR-
outer contract which allows it to send and receive
cross-chain messages.

3.2 Index Token

Figure 2: Index Contract Breakdown

The index token contract adopts a singleton architec-
ture by inheriting from multiple smart contracts and em-
bedding internal libraries. This achieves maximum effi-
ciency by minimising the number of transfers and external
calls required to execute key index functions like minting,
redeeming and rebalancing. The contract keeps track of
the Net Asset Value, underlying asset quantities on the
home and remote chains, allows new assets and weights to
be assigned, and sets the fees that the index charges.

2

Figure 1: System Overview

3.3 Orderbook

The orderbook contract generates and executes trades
during rebalancing. Each chain that the index operates on
will have an orderbook contract. All orders originate from
the homechain orderbook, which sends buy/sell orders to
each remote chain.

4 CROSS-CHAIN MESSAGING

Phuture v2 plugs into a generalised cross-chain mes-
saging protocol, which allows for the passing of messages
and execution of arbitrary logic across blockchains.

4.1 Selecting a Messaging Protocol

A number of these protocols exist each with a different
set of security and trust assumptions. We evaluate the
most popular protocols including Layerzero, Wormhole,
Axelar and Celer based on the following criteria:

- Security - How is message validity assured?

- Upgradeability - Can our security be impacted by
protocol upgrades?

- Token Bridge - How liquid is the native token bridge
and does it rely on wrapped assets?

Security. Broadly speaking each bridge analysed uses a
set of validators or signers to attest to the existence of
a transaction within a specific block. Axelar and Celer
use Cosmos based blockchains whose validators, elected

by delegated proof of stake (DPOS), attest to the valid-
ity of a transaction. Wormhole has 19 participants in its
guardian network of which 13 are required to successfully
validate a transaction. While Layerzero requires authen-
tication from both a relayer and oracle which can each
consist of multiple signers.

The native token for Axler and Celer have relatively
low market caps, such that a sufficiently motivated actor
could obtain a significant share of the votes, particularly in
Celer, where quadratic voting is not implemented. How-
ever, unlike Wormhole and Layerzero, the slashing mech-
anism used in DPOS creates a tangible cost to signing
invalid transactions outside of reputational damage.

When looking at the number of signers required to val-
idate a transaction, Layerzero requires the fewest signato-
ries in its default form, requiring 2/2, which makes it the
most susceptible to collusion.

Upgradeability. Upgradability has been a long-
standing source of significant and repeated issues within
the existing messaging frameworks. Wormhole has paid
out two separate bug bounties due to upgradeability issues
and ultimately got hacked for over $325mm in 2022 due
to another bug found in the codebase. The most recent
hack of the Nomad bridge which occurred in the summer of
2022, was due to an upgrade which introduced a bug that
allowed anyone to forge arbitrary messages and resulted
in the exploit of more than $200mm.

All the aforementioned messaging protocols except
Layerzero have upgradeable contracts that allow the owner
to upgrade core components of the protocol moving all
users and applications to these upgraded contracts. On
the other hand, Layerzero allows applications to stipulate
the specific libraries they intend to use and once set, can-

3

not be modified by the Layerzero team. This separation
provides time for new library updates to be checked before,
if deemed necessary, including them into our production
application.

Token Bridge. A token bridge will allow Phuture
v2 to move funds from one chain to another. We re-
viewed Stargate, Portal, cBridge and Satellite, the native
token bridges of Layerzero, Wormhole, Celer and Axelar,
respectively. These bridges can be broken into two cate-
gories: native bridges (cBridge and Stargate) and wrapped
bridges (Satellite and Portal). Simply put, native bridges
use native assets as their input and outputs, while wrapped
bridges take in native assets and output a wrapped variant
of that asset, which can be swapped through a liquidity
pool for the native token. In either case, high liquidity is
of paramount importance because it reduces the slippage
incurred when bridging assets.

Stargate is the most liquid bridge with a total of
$380mm in total value locked, providing the best cover-
age of the primary connecting assets, ETH, USDC and
USDT, across the major chains. While Wormhole has the
second highest liquidity, the majority of this is held on
Solana, which would not be a supported chain in the ini-
tial release of Phuture v2, and its support for bridging
assets to Optimism and Arbitrum is non-existent. Satel-
lite and cBridge have wide coverage of the major chains
but have liquidity levels that are much lower and less uni-
formly distributed than Stargate. It should also be noted
that because Stargate is a native bridge, it removes the ne-
cessity to perform an additional swap on the destination
chain.

Summary. After analysing each generalised messag-
ing protocol, we decided to use Layerzero because it allows
us to take control of our bridge configuration, effectively
separating it from any config updates pushed by the Lay-
erzero team; we can drastically reduce any risk of collu-
sion by running our own oracle or relayer in the future;
and their token bridge uses native assets with the highest
liquidity.

However, the analysis also highlighted that there is no
clear winner amongst the cross-chain messaging protocols,
and so locking Phuture v2 into a single vendor is not de-
sirable. Therefore we built Phuture v2 to support any
messaging protocol with the ability to switch should we
need to. This functionality is encapsulated in the mes-
sageRouter contract, which we discuss in the next section.

4.2 Message Router

The messageRouter forwards messages to the correct
bridge implementation which is set based on the action
type, such that different actions, like rebalancing or re-
deeming, can be channelled to different messaging proto-
cols. For example, one action may use the non-blocking
LayerZero application, while another uses the blocking

LayerZero app. This gives us enough flexibility to decide
how and through which protocol our messages get trans-
ported.

4.3 Blocking vs Non-blocking Messages

Layerzero supports both blocking (default) and non-
blocking messaging formats. All messages m are nonce-
ordered, meaning they will arrive from a source chain
and source user application with contiguous nonces N ′.
Messages with non-contiguous nonces cannot be processed
and are queued up for execution in order to keep the
sequential/non-parallel nature of the message queue. In
the blocking format, when a message fails due to a logical
or out of gas error, it is registered as a stored payload P .
This stored payload prevents the next message from the
source chain from being executed on the destination chain.
A stored payload will only block messages for a given pair
of chains and will still allow other pairs to communicate.
For example, if a message from Arbitrum to Optimism is
registered as a stored payload, messages from Ethereum
to Optimism and messages from Optimism to Arbitrum
will still get executed successfully.

Figure 3: Blocking Queue Flow

The non-blocking messaging format allows messages
to be passed freely, irrespective of failed messages. Failed
messages are stored and can be retried but do not prevent
subsequent messages from being executed.

Phuture v2 adopts the blocking format of messaging
to ensure that messages are executed in the order they
are confirmed on the destination chain. This simplifies
the design as messages will either successfully complete or
will block the message pathway preventing other messages
from being executed.

4

4.4 Message Batching

Phuture v2 is built to support asset management at
scale, and it therefore assumes the possibility that mes-
sages will carry a lot of data. For example, a single mes-
sage to a remote chain may contain data to trade 15 assets.
Messaging protocols like Layerzero enforce a 10,000 byte
limit for each message. Therefore, message batching en-
sures that each message sent is below the byte limit by
splitting the data across multiple messages.

4.5 Message Gas Configuration

Given the understanding that Phuture v2 uses blocking
messages, it is highly important that we properly estimate

the amount of gas used by a given message to ensure that
it does not block the message pathway due to an out of
gas error. Phuture v2’s gas configurations ensure that a
message is given the appropriate amount of gas.

Messages start on the source chain βs. Two types of
messages can be sent:

- One-way messages - Only send source-to-destination
messages without expecting a callback.

- Two-way messages - Send source-to-destination mes-
sage with intention to receive destination-to-source
callback message.

Notation Definition
TV Transaction value.
βs Source chain id.
βd Destination chain id.
xd Source-to-destination data.
xc Destination-to-source callback data.
gmin Minimum gas required to execute source-to-destination message on the

destination chain.
gd Extra destination gas optionally passed in addition to gmin.
gc Callback gas, required to execute destination-to-source message callback.
ϕσ Markup added to gc to account for gas price volatility.
Φ(β, g, x, α) Returns LayerZero fee in source chain token required to send data x with

gas g to the chain β with airdropped amount α.
Φd Destination message fee in the source chain’s native token.
Φc Callback message fee in the source chain’s native token.
ps Source chain native token price.
pd Destination chain native token price.

Table 1: Gas Configuration Parameters

Figure 4: Cross Chain Gas Lifecycle

5

LayerZero charges a fee Φ in the native token for each
cross-chain message. Message data payload x, gas limit
g and destination chain id β are required to calculate the
fee.

The message sender fully covers the cost of the mes-
sage. In order to calculate the total message fee Φd, the
cost of executing the message on the destination chain φd

and the cost of calling back the source chain from the des-
tination chain φc must be found.

Destination-to-source callback fee Φc is zero for one-
way messages. Destination-to-source callback is executed
after the source-to-destination message is delivered to the
destination chain. Since the message delivery might take
time, gas prices can change. A markup, ϕσ, is added to
the estimated callback fee to ensure that the callback is
executed successfully.

Φc = Φ(βs, xc, gc, 0)(1 + ϕσ) (4.5.1)

Source-to-destination message requires the sender to
pay the minimum gas requirement gmin for executing the
message data on the destination chain. gmin ensures that
the message will be executed successfully without blocking
the message pathway. It is enforced at the contract level,
such that a malicious actor cannot deliberately block the
message pathway by sending a message with value less
than gmin. Senders can add extra gas gd to gmin if the
destination transaction is expected to cost more gas than
gmin.

Φd = Φ(βd, xd, gd + gmin,Φc
ps
pd

) (4.5.2)

It is important that the gas consumption of the actions
gmin covers can be reliably estimated, with little to no vari-
ation, to ensure that messages are consistently delivered
successfully without blocking the pathway.

5 ACCOUNTING

In this section we discuss the mechanics behind index
pricing, minting, redemption and fees.

5.1 Asset Pricing

Phuture v2 utilises a number of different price feed
providers in order to price each asset within the index.
Any asset added to an index must have a price feed on
the homechain and its native chain. This ensures that
the index can be priced atomically on the homechain, and
slippage protection is applied during trading on the native
chain.

5.2 NAV

An index’s price, also known as the Net Asset Value
(NAV), is required when minting or redeeming units of the

index.

NAV =
Asset− Liabilities

Total Number of Outstanding Shares
(5.2.1)

For the scope of this paper, we are going to focus on
fund structures that do not have any liabilities, which sim-
plifies the equation to:

NAV =
Asset

Total Number of Outstanding Shares
(5.2.2)

First, we calculate the portfolio value V for n con-
stituent assets with reserves C and prices p for each con-
stituent asset i.

V =

n∑
i=1

Cipi (5.2.3)

Phuture v2 uses a reserve Cr model that allows unit
minting and redemption without buying or selling the con-
stituent assets. This is analogous to a cash balance that
the index holds, which accumulates when index tokens are
minted and is withdrawn from during redemptions. Thus
the portfolio value is now:

V = Crpr +

n∑
i=1
i ̸=r

Cipi (5.2.4)

Total supply S is the sum of outstanding index shares.
The total supply increments each time new index shares
sm are minted for all mintsM and decrements when shares
sb are redeemed for all redemptions B.

S =

M∑
i=1

sm,i −
B∑

j=1

sb,j (5.2.5)

Index price P is the portfolio value V divided by the
total supply S.

P =
V

S
(5.2.6)

It is important to note that all components of P can
be retrieved from the homechain such that the NAV can
be found atomically.

5.3 Protocol Fees

Phuture v2 allows for the accrual of the following fees:
minting, redemption and AUM.

5.3.1 Minting Fee

Minting fee ϕm is deducted from the minted units sm.
Minted shares received after deducting minting fee is

s′ = sm(1− ϕm) (5.3.1)

The minting fee is settable by the index manager and
has two purposes:

6

1. Compensate the index manager for administering
the index.

2. Allow the index manager to add a premium to the
NAV. A premium may be added to the price at which
new units are minted to prevent the index from be-
ing exploited. Exploits can occur when the price at
which the index is minted is below the actual NAV.
This can occur due to delayed price feeds.

5.3.2 Redemption Fee

The redemption fee ϕb is deducted from the redeemed
shares sb. Redeemed number of shares after deducting
redemption fee is

s′ = sb(1− ϕb) (5.3.2)

The redemption fee is settable by the index manager
and has two purposes:

1. Compensate the index manager for administering
the index.

2. Allow the index manager to add a discount to the
NAV. A discount may be added to the price at which
new units are redeemed to prevent the index from
being exploited. Exploits can occur when the price
at which the index is redeemed is above the actual
NAV. This can occur due to delayed price feeds.

5.3.3 AUM Fee

AUM fee is a function ϕa(t) of time t. ETFs typically
deduct their management fee from the NAV on a daily or
monthly basis. The expected decay in portfolio value V
can be expressed with a rate r and t number of compound-
ing periods.

V (1− r)t (5.3.3)

The AUM fee cannot be accrued once per year because
portfolio value V can drastically change due to mints or re-
deems at any time. AUM should be calculated and charged
before V changes. For example, if a user deposits with-
out AUM accrual, the newly deposited assets would be
accounted for as a part of the previous fee accrual time
interval resulting in more fees taken than necessary. If a
user redeems without AUM accrual, capital would leave
the index without accruing fees for the last time interval.

Instead of separately accruing AUM from constituent
quantities Ci, it is more gas efficient to dilute the total
supply S. Each new accrual mints ∆S dilution. This
dilution includes previous dilutions, resulting in the con-
tinuous compounding of S.

S

(1− r)t
=

S

e−xt
(5.3.4)

By simplifying the expression above and solving for x,
a continuously compounded rate x is recovered and that
will equal the simple rate of r, ensuring that the AUM fee
is not overcharged due to compounding.

x = −ln(1− r) (5.3.5)

A continuously compounded total supply dilution rate
per second x

T is precomputed off-chain and passed on-chain
as a constant to avoid extra computations. Since the EVM
calculates time in seconds, x should be normalised by di-
viding by the average number of days in a year, converted
to seconds T .

T = 365.2425 · 86400 = 31556952

Last AUM accrual timestamp tl is reset each time the
AUM fee is charged.

t′l =

{
t, if t > tl.

tl, otherwise.
(5.3.6)

The final AUM fee function is thus given by

ϕa(t) = e
x
T (t−tl) (5.3.7)

Minted total supply dilution ∆S is

∆S = S(ϕa(t)− 1) (5.3.8)

Total supply after AUM fee accrual

S′ = Sϕa(t) (5.3.9)

The AUM fee is settable by the index manager.

5.4 Index Minting

Phuture v2 introduces atomic, slippage-free minting of
multi-chain index funds. Instead of requiring each con-
stituent asset to be bought during the minting process, a
reserve asset cr is deposited into the index, and new units
are created based on the NAV. During this process, mint-
ing and AUM fees are charged. The amount of minted
shares s for a given deposited amount net of minting fee
c′r is:

s(c′r) =

{
c′rpr, ifS = 0.

c′rpr
S′

V , otherwise.
(5.4.1)

Once a given quantity of reserve asset has accumulated
in the index, they will be converted into constituent assets
via a process called reserve rebalancing. Reserve rebalanc-
ing converts the available quantity of Cr held by the index,
into the current set of constituent assets using the current
target weights.

The reserve model described above drastically reduces
the gas costs of minting new index units and removes the
need to execute swaps. Lowering costs promotes more

7

arbitrage, ensuring the exchange price closely tracks the
NAV and allows more people to access the primary market
where they can take advantage of slippage-free execution.

It is worth noting that not immediately purchasing the
constituent assets can cause the NAV to deviate from the
benchmark that it is tracking. However, this deviation can
largely be mitigated by having more frequent investment
cycles or initiating a new cycle once the ratio of reserve
asset to portfolio value reaches a certain threshold.

5.5 Index Redemption

When units of the index are redeemed, the protocol
first tries to fully cover the value of redeemed shares s
with the value held in reserve token Cr. In cases where Cr

has sufficient value, the redemption can complete without
selling any constituent assets.

Constituents are sold only if there is insufficient value
in Cr. This is done for optimisation purposes:

- Gas costs - Withdrawing multiple constituents re-
quires more gas to be paid for transfers and internal
accounting.

- Cross-chain overhead - Cross-chain messages charge
bridging fees and take longer to execute due to their
non-atomic nature.

- Fees - Swapping multiple assets incurs trading fees.

- Performance - Reserve growth causes the index to
stray away from its benchmark. Having less reserve
ensures that the index more strictly follows its in-
tended strategy.

Total number of reserve shares Sr available for redemp-
tion is recovered by expressing the available reserve tokens
Cr in terms of index shares.

Sr = Crpr
S′

V
(5.5.1)

Redeemed shares cannot exceed the total supply s ∈
{0, ..., S}. The amount of reserve shares sr withdrawn
cannot exceed the total amount of reserve shares Sr.

sr = min(s′, Sr) (5.5.2)

Withdrawn reserve assets cr convert from shares to re-
serve asset.

cr =

{
0, ifSr = 0.

sr
Cr

Sr
, otherwise.

In case the reserve was insufficient to cover redeemed
shares s′, the remaining shares (s′ − sr) would be used
to proportionally withdraw from each index constituent i,

with total quantity Ci. Total supply S must be reduced
to remove the previously redeemed shares sr.

Withdrawn constituent quantity ci for constituent i:

ci(s
′) =

{
0, ifS′ − sr = 0.

(s′ − sr)
Ci

(S′−sr)
, otherwise.

(5.5.3)

Withdrawn asset value v is, therefore, a combination of
withdrawn reserve token plus the sum of each withdrawn
index constituent.

v = crpr +

n∑
i=1
i ̸=r

cipi (5.5.4)

5.5.1 Redemption Escrow

Each user is given their own escrow account on each
remote chain when they redeem index tokens. The escrow
account is a holding area for funds which were not suc-
cessfully sent back to the homechain. This can happen
because of a trading related error or an out of gas error.
The escrow account allows for transactions to gracefully
fail by transferring funds to the escrow and preventing the
error from blocking the message pathway. Funds held in
the escrow can be returned to the homechain upon the
user’s request.

The minimum gas to invoke the redeem function, gmin,
is set to ensure there is always enough gas to escrow the
assets on each chain the index operates on.

5.5.2 Two Stage Redeem

Redemptions should complete in a single transaction.
However, if another mint or redeem transaction is in the
same block, there is a case where it will span two transac-
tions. This is attributed to the fact that redemptions first
utilise the reserve before selling constituents. If the reserve
changes intra-block then the quantity of constituents sold
can increase or decrease. However, the data passed in from
the exchange aggregators will not adjust for this change
in quantity and, therefore, will try to sell too little or too
much of each constituent.

To handle this case, the redeem function takes in the
ratio of reserve value to total constituent value as an ad-
ditional parameter. If the ratio is the same as what is
computed on-chain, then it means that the state of the
index is unchanged, and a single transaction will suffice.
If the ratio has changed, the swap data passed in will be
incorrect. To avoid wasting gas, the first transaction with-
draws each constituent asset to the user’s escrow account
without executing any swaps. The second transaction con-
verts and bridges these assets back to the homechain.

8

Figure 5: Index Redemption Flow

6 PROOF OF ASSETS

Proof of Assets (PoAs) are accounting representations
of the native tokens held on the remote chains. PoAs are
stored on the homechain to account for the quantity of
each asset held on the remote chains. PoAs are not liquid
- they are used for accounting purposes only and are not
designed to be traded or utilised outside of the protocol.

PoAs are updated by sending remote-to-home chain
messages. PoA balances are refreshed:

- Upon completion of rebalancing.

- Upon completion of reserve rebalancing.

Updating the PoAs stored on the homechain each time
balances on the remote chains change allows the home-
chain to accurately calculate the NAV of the index.

7 SUB INDICES

Internally, multi-chain indices built on Phuture v2 con-
sist of smaller sub-indices, each sub-index contains the as-
set vault for a particular remote chain. A sub-index has
both a homechain and remote chain representation. On
the homechain, each sub-index holds a set of Proof of As-
sets (PoAs), while the remote chain sub-index holds the
native asset vault.

Sub-index shares represent percentage ownership of the
underlying asset vault. Therefore, a user will own a per-

centage of the sub-index shares proportional to their own-
ership of the index’s outstanding tokens.

Figure 6: Sub-Index

Structuring multi-chain indices as an index comprised
of a number of sub-indices is beneficial for two mains rea-
sons:

- Reducing storage costs through aggregation of op-
erations - Sub-index-based approach reduces the
algorithmic complexity from O(constituents) to
O(remote chains). Accounting for all index con-
stituents is costlier than accounting for sub-indices.

- Reducing cross-chain bandwidth - Operating with
sub-indices helps to reduce cross-chain bandwidth.
Since each remote chain is aware of all the assets
it holds, no explicit information about constituents

9

and their quantities need to be passed to the remote
chain.

7.1 Sub-Index Snapshots

Snapshots have been designed to keep track of a sub-
index’s assets and balances over time. Each time any form
of rebalancing is conducted a new snapshot is created with
the sub-index’s new state.

Snapshots were developed to solve for a lack of transac-
tion atomicity in cross chain systems, due to the possibility
that a message can successfully send on the homechain but
fail on the destination chain due to an error. Therefore,
snapshots allow Phuture v2 to recover a sub-index’s pre-
vious state and properly account for failed transactions
when they are eventually retried.

Figure 7: Sub-Index Snapshots

To showcase snapshots, we will take a look at a failed
redemption transaction. When the redemption transac-
tion fails the shares of the current sub-index snapshot,
kn−1 are transferred to the user’s escrow account. The
user does not immediately retry the transaction and a new
snapshot is created, n, as a result of a rebalancing. When
the new snapshot is created all funds owed to the kn−1

snapshot shares held by the index are transferred over,
leaving the portion of assets owed to escrowed kn−1 snap-
shot shares. When the user eventually redeems they will
access the funds remaining in the n − 1 snapshot, ensur-
ing they only receive the assets and quantities they would
have originally received had their redemption transaction
initially succeeded.

7.2 Sub-Index Accounting

The sub-index architecture scales the underlying PoA
balances in order to recover the actual quantities held on
the remote chain. Initially, a sub-index’s numerator, k, is

set to the same value as the denominator K.

k := K (7.2.1)

Therefore, the initial scale factor of the sub-index is 1,
which means the PoA balances are equal to the quantities
held on the remote chain.

Scale Factor =
k

K
= 1 (7.2.2)

When the protocol processes a redemption, instead of
decrementing the balance of each PoA held by the sub-
index, the numerator k of the scaling factor is decreased
by the percentage of the index redeemed.

k := k(1− s′ − sr
S′ − sr

) (7.2.3)

By adjusting the scaling factor, we can decrement the
balances of all PoAs held through a single storage write,
reducing the accounting related gas costs during redemp-
tions.

k
CPoA

K
(7.2.4)

Whenever a sub index’s PoA balances are refreshed
through rebalancing or reserve rebalancing, k is reset to
equal K.

8 REBALANCING AND OR-
DER EXECUTION

The rebalancing and order execution capabilities in-
stilled in Phuture v2 bring about the ability to shift an in-
dex fund to a new set of target weights and assets by gen-
erating and executing orders across all necessary chains.
Below is a diagram outlining the rebalancing process from
start to finish, and in the subsequent sections, we will dive
into this further.

An important consideration to be aware of during
cross-chain order execution is that minting and redemp-
tion functionality is blocked. This is to ensure that value
cannot be syphoned from the index by actors taking ad-
vantage of the stale NAV. A stale NAV occurs primarily
due to latency between the remote chain and the home-
chain. An example will provide further clarification.

An index manager initiates rebalancing at a NAV of
100 USD per token. The rebalancing requires selling all
the held AVAX for a new asset ETH. Once this trade is
executed, the homechain must be notified of the compo-
sition change. However, there is a delay in this message
being received. In the meantime, the price of ETH is in-
creasing rapidly. The actual value of the index is now 110
USD, but the homechain is still reporting a value of 100
USD. This allows a trader to mint new units of the in-
dex at 100 USD, wait for the homechain to update with
the new composition and then redeem their tokens at 110
USD, profiting 10 USD.

10

Figure 8: Rebalancing Flow

The profitability of the above scenario can be reduced
by increasing the minting and redemption fees. However,
this was considered to be a less robust solution in the event
of extreme price volatility.

8.1 Generating Gaps

The current weight w of each constituent i is a ratio of
its value divided by the total index valuation. Normalising
by V ensures weights are mapped to [0, 1] range.

wi =
Cipi
V

(8.1.1)

When rebalancing is initiated, the fund manager sup-
plies a new set of weights w′

i for each constituent i. Sum
of all target weights must add up to 1.

n∑
i=1

w′
i =

n∑
i=1

wi = 1 (8.1.2)

Gap orders ∆Ci would then be generated for each con-
stituent i by converting the portfolio weight delta into con-
stituent terms. Constituents must be sold if w′

i < wi and
bought if w′

i > wi.

∆Ci =
V (w′

i − wi)

pi
(8.1.3)

Sell/buy gaps ∆C are then generated and orders are
sent to the respective remote chains. Rebalancing swaps
fill gaps to best move current weights wi to target weights
w′

i.

8.2 Order Types

Order (Ck,s, bk, βk) consists of quantity Ck,s for sold
constituent s, bought asset bk and destination chain βk

for order k.

Phuture v2 has 3 order types:

- Local orders - Sell Ck,s worth of constituent s on the
same chain as the current chain βk = βc.

- Outgoing orders - Sell Ck,s worth of constituent s to
buy constituent b on the destination chain βk, where
βk ̸= βc. Outgoing order messages are batched and
sent once all local orders are executed.

- Incoming orders - Incoming orders are outgoing or-
ders that have arrived at their destination chain βk.
Structurally they are the same as local orders - their
destination chain βk matches current chain βc.

Each chain will be in one of the following mutually
exclusive states:

- Net outflow - Funds will be sent to other chains via
outgoing orders.

- Net inflow - Funds will be received from other chains
via incoming orders.

- Net neutral - Funds will not be sent or received and
only local orders will be executed.

11

8.3 Outgoing Orders

Given that bk is the asset to be purchased on the des-
tination chain, the protocol still needs to execute an in-
termediary buy to the asset that will be bridged to that
chain. The bridged asset depends on the destination chain
βk and can be recovered from a mapping held on-chain.
This allows the protocol to select the best bridging as-
set for each destination chain. Bridging assets are chosen
based on their liquidity to maximise the output value on
the destination chain.

8.4 Incoming Orders

The number of incoming orders I ′ is passed to each
chain when rebalancing begins. The expected count of
incoming orders is necessary to not end rebalancing pre-
maturely.

Figure 9: Update Orderbook Flow

Once incoming orders arrive at their destination, they
are added to the order set O. The expected incoming order
count I is decremented upon message arrival.

Figure 10: Process Incoming Orders Flow

8.5 Trading

Phuture v2 allows trustless trading through exchange
aggregators by prescribing several checks and balances
to ensure the correct trades are being executed, at the
real market price, within acceptable slippage tolerances.
Firstly, the protocol sanitises the order by ensuring it ex-
ists within the set of orders on that chain, preventing in-
correct orders from being executed.

Figure 11: Execute Trade Flow

Sold order amount is verified - caller cannot sell more
cs than available order quantity –Ck,s (sell-side orders are
negative).

cs ≤ −Ck,s (8.5.1)

Swapping constituent quantity cs with swap function
S is only allowed if the value of the bought asset quantity
cb is within the allowed tolerance margin θσ. This pre-
vents trades with excessive slippage from being executed
and eroding the value of the index.

cbpb < csps(1− θσ) (8.5.2)

Order sizes are then updated to reflect the amounts
traded. Orders move towards zero when trades are exe-
cuted, reflecting a tightening of gaps. Negative sell side
quantity Ck,s moves towards zero by getting incremented
by cs. Buy-side quantity is accumulated and Ck,b is incre-
mented by cb.

Ck,s := Ck,s + cs (8.5.3)

Ck,b := Ck,b + cb (8.5.4)

12

8.6 Completing Rebalancing

Rebalancing is complete on each chain when all −Ck,s

are below the minimum value threshold θm for all orders
and the incoming orders count I is equal to zero.

|O|∑
k=1

[−Ck,s · ps < θm] = 0 (8.6.1)

Outgoing order messages Mo with bought quantity
Ck,b are sent to each destination chain βk before rebal-
ancing completion.

When all orders are executed, message Mh is sent to
the homechain βh to signify rebalancing completion on the
remote chain. Each Mh will refresh the PoA balances held
by the sub-index for that particular chain.

Figure 12: Finalise Rebalancing Flow

Once the homechain receives rebalancing completion
messages from all chains, the sub-index scalar is reset and
minting and redemption functionality is reinstated.

8.7 Reserve Rebalancing

Reserve rebalancing is an operation initiated on the
homechain, which converts the funds held in the reserve,
Cr, into the constituent assets of the index according to
the current set of target weights, wi.

Ck,r = −Crwi (8.7.1)

The sold quantity Ck,r computed for reserve asset r,
order k is injected into local or outgoing orders, depend-
ing on which chain the constituent asset resides. Orders
(Ck,r, bk, βk) are local when βk = βh and outgoing when
βk ̸= βh. In all cases, bk is the constituent asset to be
bought by the order.

The process for trading and reinstating mint-
ing/redeeming is identical to that described in section 8.5
and 8.6 respectively.

9 OPTIMISATIONS

The optimisations in Phuture v2 centre around com-
pression in order to reduce the operational costs of the
index and allow the protocol to support index products
with potentially 100s of assets.

Optimisations fall into two key areas:

- Storage costs - Storing redundant data or making un-
necessary transfers for multiple assets between smart
contracts.

- Bandwidth costs - Passing data for multiple assets in
between smart contracts (making external calls) and
sending cross-chain messages. Bandwidth-related
gas overheads can be, in some cases, comparable to
making multiple SSTORE operations.

Throughout this paper we have discussed several opti-
misations including the singleton index contract architec-
ture, reserve accounting and sub-index accounting. Next
we will take a look at other optimisations included in
Phuture v2.

9.1 Index Config Hashing

The index config contains the data that is static in be-
tween rebalancing periods such as assets, weights, index
balances, fee parameters, etc. Only the 32-byte hash of
the index config is stored on-chain. During minting or
redemption a hashed version of the config is generated off-
chain and passed in as a parameter where it is compared to
the stored config hash. This removes the need to SLOAD
all the required variables during minting and redemption.

9.2 Bit Packing

Phuture v2 tightly packs multiple variables into a sin-
gle EVM word to reduce bandwidth when making external
calls and sending cross-chain messages. Libraries for mul-
tiple packed variables were created:

- A160U96 - Packs an address and uint96 balance
variable into a single word.

- U16X15 - Packs 15 uint16 variables into a single
word with one variable allocated for length encod-
ing.

- U96X2 - Packs 2 uint96 balance variables into a sin-
gle word.

9.3 Bit Sets

Bit sets can store up to 256 unique, contiguous inte-
gers in a single EVM word. Phuture v2 internally assigns a
unique integer ID for each asset’s address, which reduces

13

bandwidth from N address elements to ⌈N/256⌉ address
ID elements.

10 CONCLUSION

Phuture v2, as described in this paper, will allow for
the creation and management of cross-chain, non-custodial
index funds with permissionless unit issuance and redemp-
tion. The innovations that Phuture v2 delivers will signif-
icantly increase the asset universe that crypto index funds
have access to, allowing for the formation of comprehen-
sive market and sector-based indices.

11 FUTURE WORK

Building on the foundations set out in this paper, the
protocol can be extended to include:

- Support for non-EVM chains - Providing access to
assets on non-evm chains to further broaden the
available asset universe.

- Improved pricing - Provide pricing support for longer
tail assets and improve price feed aggregation on the
homechain.

- Improved bridge pathing - Expand the number of
bridges used and optimise pathing between them.

- ZKP-driven scaling use-cases - Perform complex cal-
culations for 100s of assets off-chain (e.g. NAV), dy-

namic fee calculation based on market risk modelling
and advanced rebalancing/trading strategies.

12 DISCLAIMER

This paper is for general information purposes only.
It does not constitute investment advice or a recommen-
dation or solicitation to buy or sell any investment and
should not be used in the evaluation of the merits of mak-
ing any investment decision. It should not be relied upon
for accounting, legal or tax advice or investment recom-
mendations. This paper reflects current opinions of the
authors which are subject to change without being up-
dated.

REFERENCES

[1] Bloomberg.com, Passive likely overtakes active by
2026, earlier if bear market, 2021, https://www.bl
oomberg.com/professional/blog/passive-likel

y-overtakes-active-by-2026-earlier-if-bear-m

arket/.

[2] CNBC, ETF EDGE New report finds almost 80% of
active fund managers are falling behind the major in-
dexes, 2022, https://www.cnbc.com/2022/03/27/ne
w-report-finds-almost-80percent-of-active-f

und-managers-are-falling-behind.html.

14

https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.bloomberg.com/professional/blog/passive-likely-overtakes-active-by-2026-earlier-if-bear-market/
https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behind.html
https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behind.html
https://www.cnbc.com/2022/03/27/new-report-finds-almost-80percent-of-active-fund-managers-are-falling-behind.html

